
Online Patientenseminar Gesund ins Jahr 2022

Update Corona – was gibt es Neues?

Anna Nolde, 22.03.2022

Ausgangslage

Comparing evidence 3rd mRNA COVID-19 vaccine dose in immunosuppressed people with seropositive response

			2 nd Dose		Sero	3 rd Dose Seronegative after 2 nd dose					
Study	Patient Population	Sample Size	Seronegative N (%)	Seropositive N (%)	Sample Size	Seronegative N (%)	Seropositive N (%)				
Kamar et al.	Recipients of solid-organ transplant	99	59 (60)	40 (40)	59	33 (56)	26 (44)				
Werbel et al.*	Recipients of solid-organ transplant	30	24 (80)	6 (20)	24	16 (67)	8 (33)				
Longlune et al.	Patients on hemodialysis	82	13 (16)	69 (84)	12	7 (58)	5 (42)				
Maxime et al.	Patients on hemodialysis	106	66 (62)	40 (38)	12	6 (50)	6 (50)				

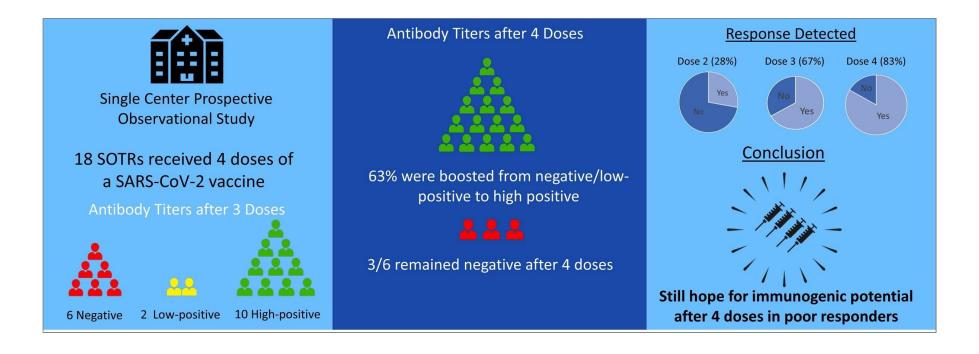
^{*} Recipients received homologous mRNA prime followed by either a single Moderna, Pfizer, or Janssen boost

www.rki.de, letzter Zugriff 19.03.2022

https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-07/07-COVID-Oliver-508.pdf

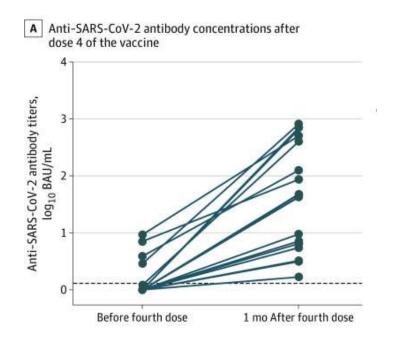
Agenda

- 1. Was können wir von einer 4. Impfung erwarten?
 - Studienlage
 - Erfahrungen aus dem UKE
- 2. Welche Therapiemöglichkeiten gibt es?
 - Therapeutische Ansatzpunkte
 - Studienlage
 - Erfahrungen aus dem UKE

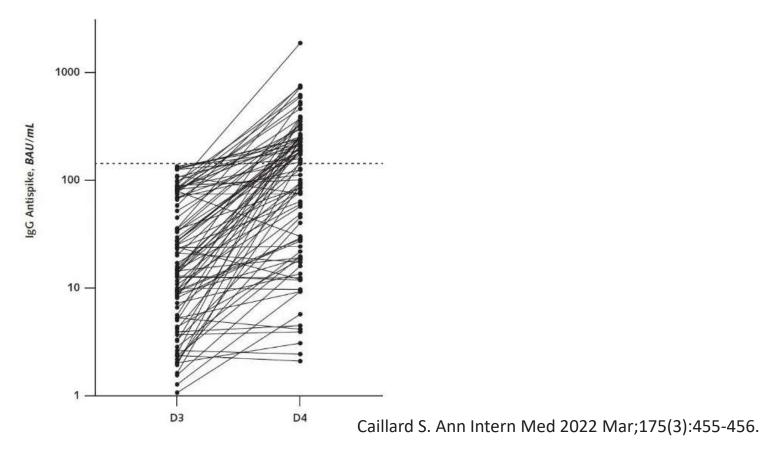


Agenda

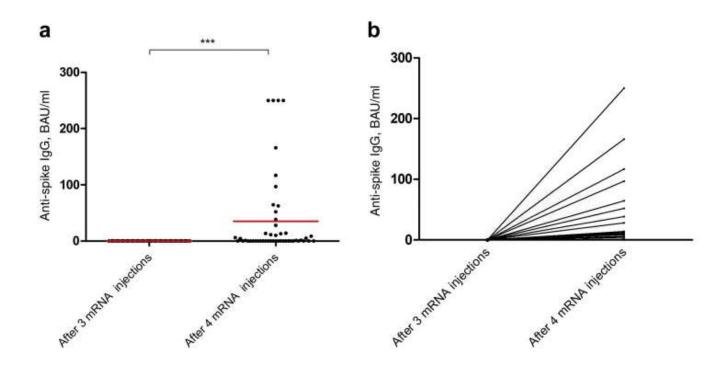
- 1. Was können wir von einer 4. Impfung erwarten?
 - Studienlage
 - Erfahrungen aus dem UKE
- 2. Welche Therapiemöglichkeiten gibt es?
 - Therapeutische Ansatzpunkte
 - Studienlage
 - Erfahrungen aus dem UKE


Antibody Response to a Fourth Dose of SARS-CoV-2 Vaccine in Solid Organ Transplant Recipients (11 Kidney, 3 Liver, 2 Heart, 2 Kidney-Liver)

Alejo JL. Transplantation. 2021 Dec 1;105(12):e280-e281.



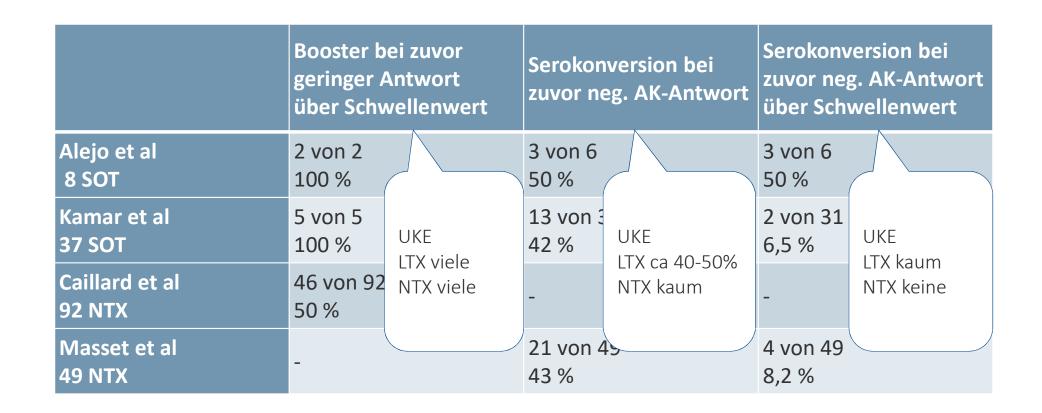
Assessment of 4 Doses of SARS-CoV-2 Messenger RNA-Based Vaccine in Recipients of a Solid Organ Transplant (25 Kidney, 5 Heart, 4 Liver, 3 Pancreas)



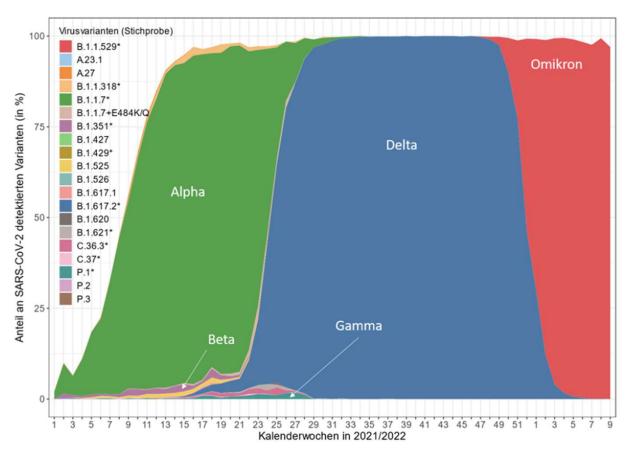
Antibody Response to a Fourth Messenger RNA COVID-19 Vaccine Dose in Kidney Transplant Recipients

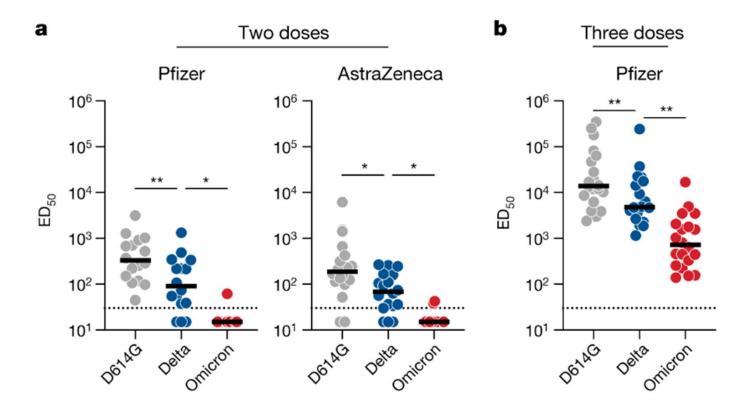
A fourth SARS-CoV-2 mRNA vaccine in strictly seronegative kidney transplant recipients

Masset C. doi: 10.1016/j.kint.2022.01.017. Epub ahead of print.



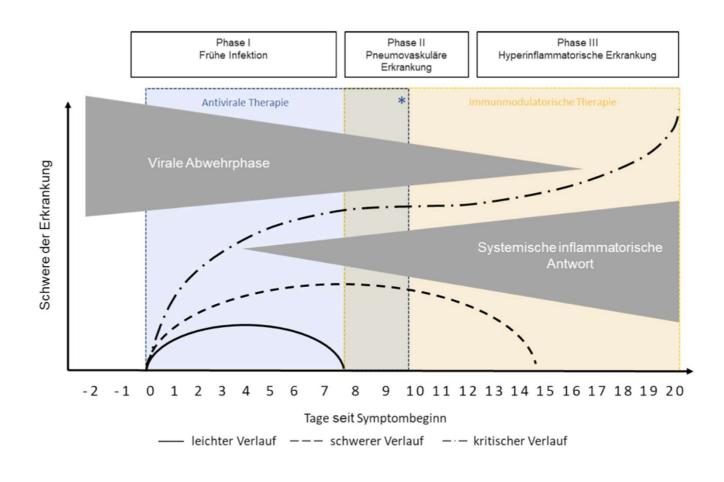
Zusammenfassung 4. Impfung

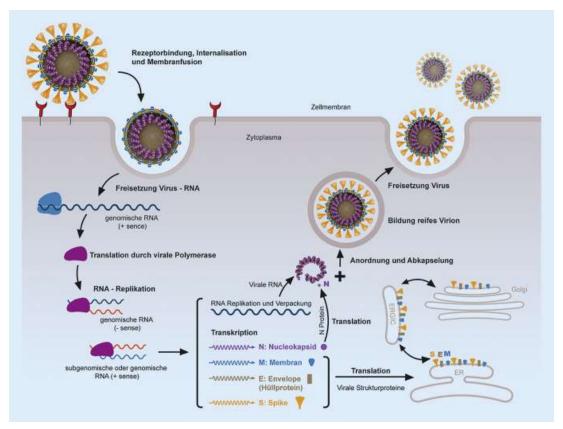

	Booster bei zuvor geringer Antwort über Schwellenwert	Serokonversion bei	Serokonversion bei zuvor neg. AK-Antwort über Schwellenwert
Alejo et al	2 von 2	3 von 6	3 von 6
8 SOT	100 %	50 %	50 %
Kamar et al	5 von 5	13 von 31	2 von 31
37 SOT	100 %	42 %	6,5 %
Caillard et al 92 NTX	46 von 92 50 %	-	-
Masset et al	-	21 von 49	4 von 49
49 NTX		43 %	8,2 %


Zusammenfassung 4. Impfung

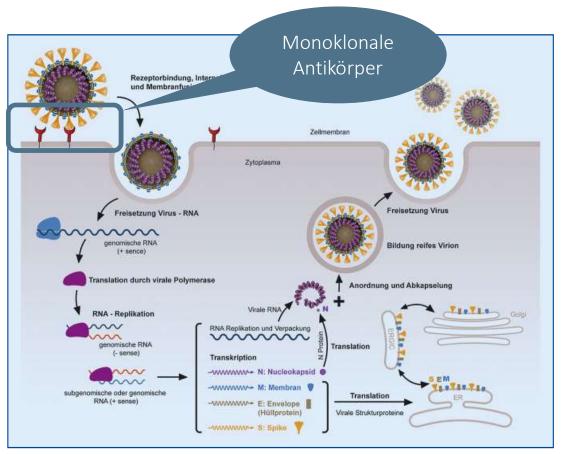
Wöchentlicher Lagebericht des RKI 2022-03-17

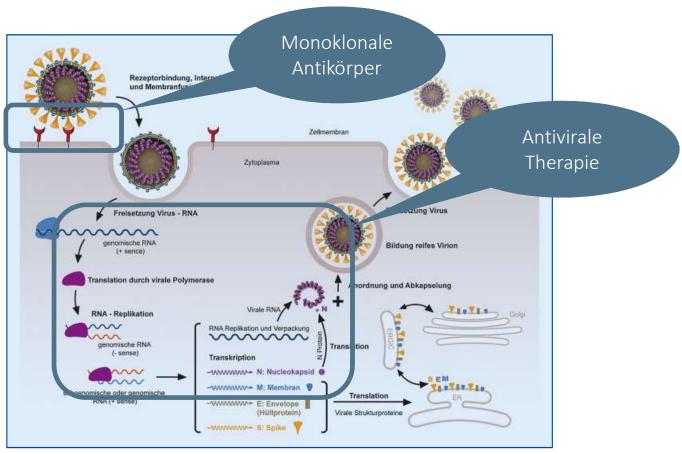
Planas D. Nature. 2022 Feb;602(7898):671-675



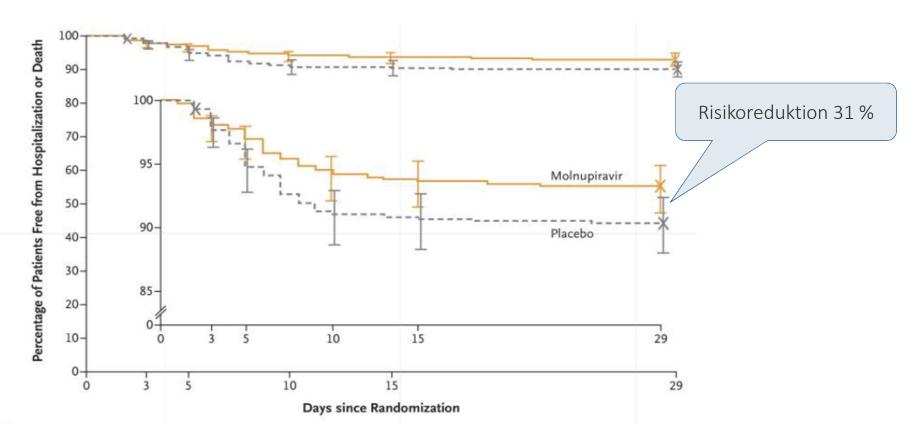


Agenda

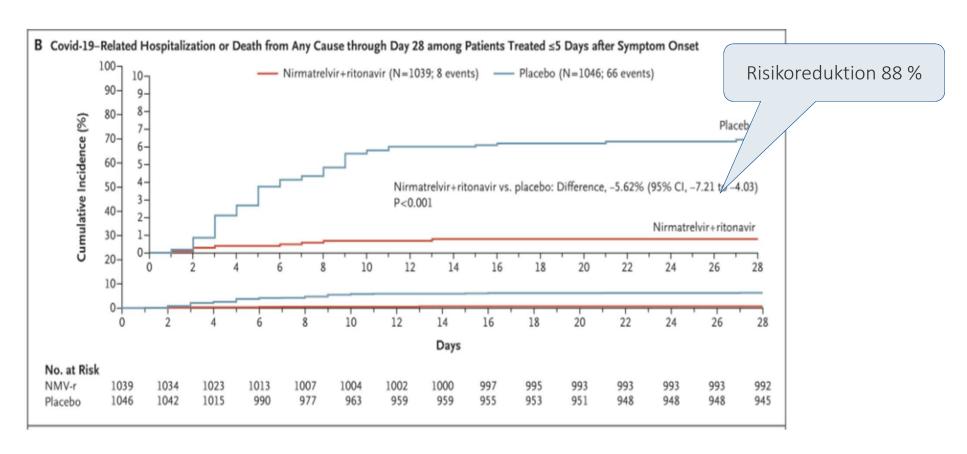

- 1. Was können wir von einer 4. Impfung erwarten?
 - Studienlage
 - Erfahrungen aus dem UKE
- 2. Welche Therapiemöglichkeiten gibt es?
 - Therapeutische Ansatzpunkte
 - Studienlage
 - Erfahrungen aus dem UKE



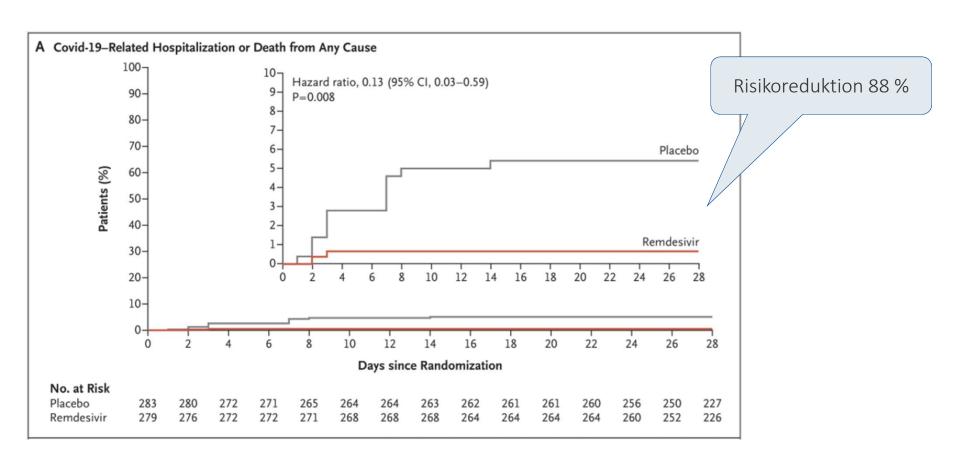
Ueffing M. Ophthalmologe. 2020;117(7):609-614


Ueffing M. Ophthalmologe. 2020;117(7):609-614

Ueffing M. Ophthalmologe. 2020;117(7):609-614

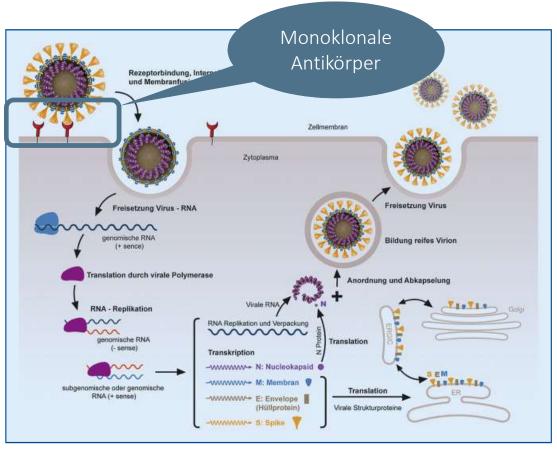

Molnapiruvir (Lagevrio)

Jayk Bernal A. N Engl J Med. 2022 Feb 10;386(6):509-520


Nirmatrelvir/Ritonavir (Paxlovid)

Hammond J. N Engl J Med. 2022 Feb 16. doi: 10.1056/NEJMoa2118542. Epub ahead of print

Remdesivir (Veklury)

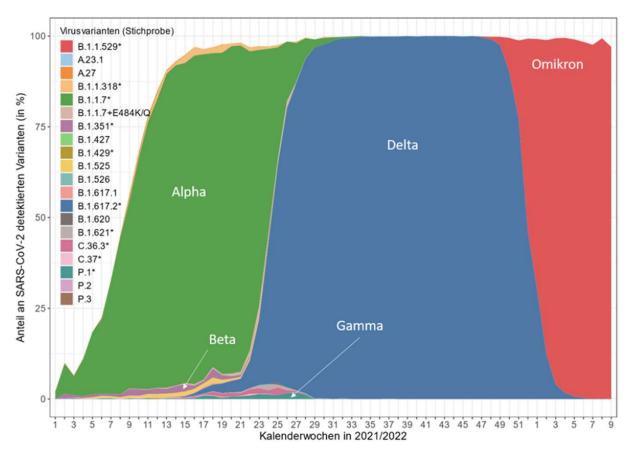


Gottlieb RL. N Engl J Med. 2022 Jan 27;386(4):305-315

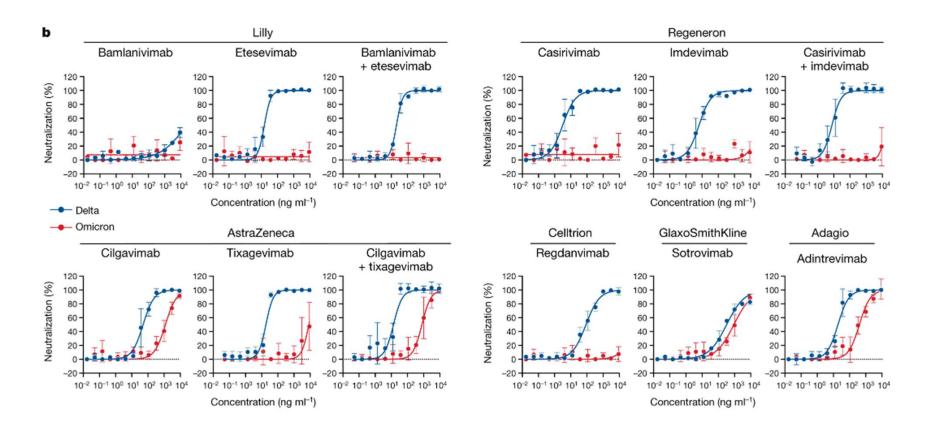
Zusammenfassung antivirale Therapie

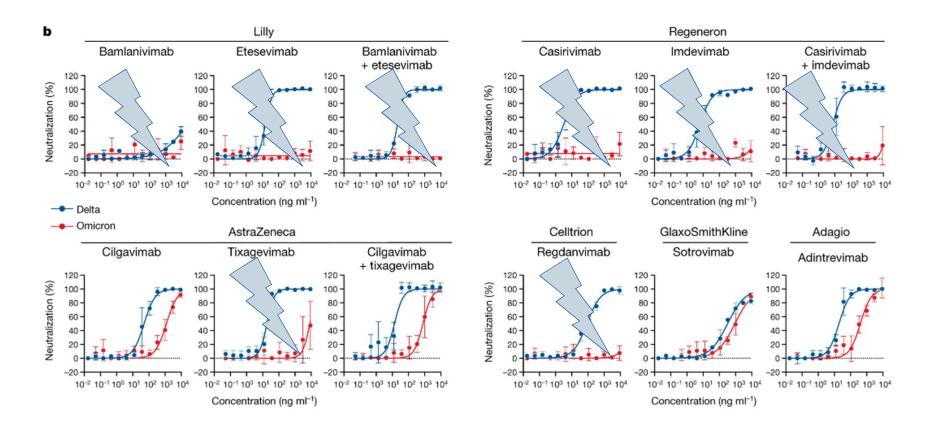
	Molnapiruvir Lagevrio	Nirmatrelvir/RItonavir Paxlovid	Remdesivir Veklury
Studie	MOVe-OUT	EPIC-HR	PINETREE
Patienten in Studie	1408	2246	562
Zeitfenster	bis d5	bis d5	bis d7
RR Hospitalisation/Tod	48/709 vs 68/699 6,8 % vs 9,7 % RR 31 %	8/1039 vs 66/1046 0,8 % vs 6,3 % RR 88 %	2/279 vs 15/283 0,7 % vs 5,3 % RR 87 %
КІ	SS, Stillzeit	GFR<30 ml/min Child-Pugh C Wechselwirkungen	GFR<30 ml/min ALT > 5xULN
Verabreichung	5d po	5d po	3d iv
Zulassung	Individueller Heilversuch vom BGM bereitgestellt	bedingte Zulassung für FPPPP Pat. ab 12 J mit RF	bedingte Zulassung für Pat. ab 12 J mit RF

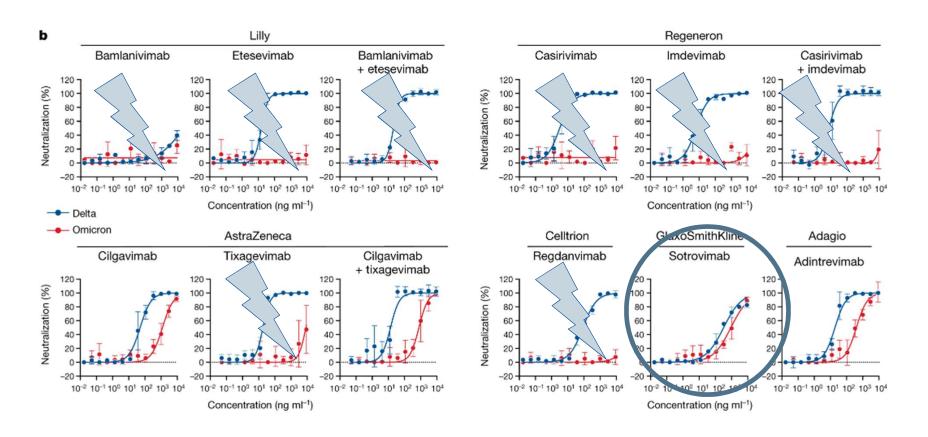
Ueffing M. Ophthalmologe. 2020;117(7):609-614



Casirivimab/Imdevimab (Ronapreve)



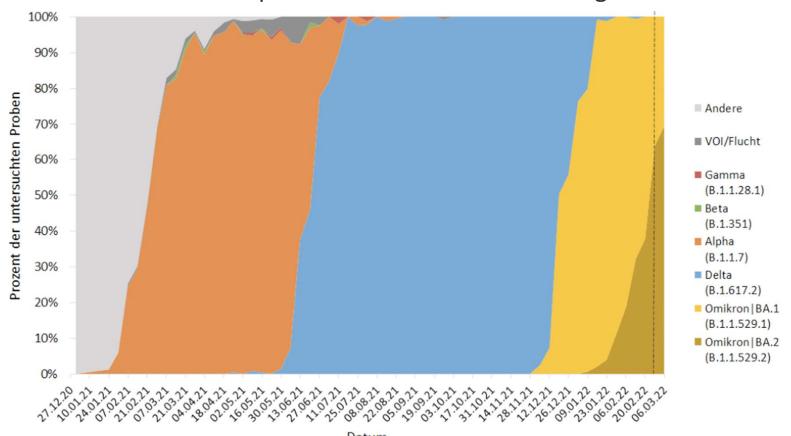

Wöchentlicher Lagebericht des RKI 2022-03-17



Planas D. Nature 2022 Feb;602(7898):671-675

Planas D. Nature 2022 Feb;602(7898):671-675

Planas D. Nature 2022 Feb;602(7898):671-675


Sotrovimab (Xevudy)

Risikoreduktion 79 %

	Sotrovimab (n = 528)	Placebo (n = 529)	Absolute difference (95% CI), %b	a relative risk (95% CI)	P value ^c
Primary efficacy outcome, No. (%) ^d					
All-cause hospitalization lasting >24 h for acute illness management or death due to any cause through 29 d	6 (1)	30 (6)	-4.53 (-6.70 to -2.37)	0.21 (0.09 to 0.50) ^e	<.001
Components of the primary outcome, No. (%)					
All-cause hospitalization lasting >24 h for acute illness management	6 (1)	29 (5)			
Death due to any cause	0	2 (<1)			
Secondary outcomes ^g					
Composite outcome of all-cause emergency department visit, hospitalization of any duration, or death due to any cause through 29 d, No. (%)	13 (2)	39 (7)	-4.91 (-7.50 to -2.32)	0.34 (0.19 to 0.63)	<.001
Change from baseline in viral load at 8 d, least-squares mean difference (95% CI), log ₁₀ copies/mL ^h	(n = 294) -2.589 (-2.708 to -2.470)	(n = 305) -2.357 (-2.475 to -2.240)	-0.232 (-0.399 to -0.065) ⁱ		.007
Progression to severe or critical respiratory COVID-19 through 29 d, No. (%) ^j	7 (1)	28 (5)	-3.97 (-6.11 to -1.82)	0.26 (0.12 to 0.59)	.002

Entwicklung des prozentualen Anteils verschiedener Abstammungslinien in SARS-CoV2- positiven Proben aus Hamburg

https://www.hpi-hamburg.de/fileadmin/media/pdf letzter Zugriff 16.03.2022

Antibody Evasion Properties of SARS-CoV-2 Omicron Sublineages

								F	RBD mAb	S								NTD N	
Fold change in IC ₅₀ relative to		Class 1			Class 2			Class 3					Class 4				NTD mAbs		
D614G	CB6	Brii-196	1-20	REGN 10933	COV2- 2196	LY-CoV 555	2-15	REGN 10987	COV2- 2130	S309	2-7	Brii-198	LY-CoV 1404	ADG-2	DH1047	10-40	S2X259	4-18	5-7
BA.1	<-428	-298	<-429	<-2201	-306	<-1496	<-2716	<-1716	-83.5	-6.9	-195	2.3	1.4	-11.0	-14.2	-21.1	-13.7	<-26.7	-4.1
BA.1 + R346K	<-428	-135	<-429	-415	-187	<-1496	< 2716	< 1716	< 687	-4.5	82 1	<-22	1.5	15.7	-7.9	20 5	-7.5	< 26.7	-5.5
BA.2	<-428	-322	<-429	<-2201	-680	<-1496	<-2716	-253	-1.9	-27.0	-7.3	-10.5	1.1	<-555	<-58.0	< 114	< .96	< .26.7	<-171
T19I	-3.1	-4.9	-5.3	-3.7	-1.9	-2.2	-2.0	-2.1	-1.5	-1.8	-5.1	-1.6	-1.7	-1.7	-1.5	-2.7	-2.9	-6.1	-3.3
L24S	-2.9	-4.0	-4.6	-3.2	-2.4	-2.4	-2.8	-4.2	-2.1	-1.5	-2.6	-2.2	-1.6	-1.3	-1.1	-2.4	-2.0	-3.1	-1.1
Del25-27	-1.2	-2.6	-2.0	-1.3	-1.0	-1.4	-1.2	-1.3	1.0	-1.3	-2.8	2.0	-1.2	1.1	1.6	-1.8	1.1	23 1	16.8
V213G	-2.5	-3.1	-3.0	-3.1	-1.5	-1.1	-1.6	-2.2	-2.0	-1.2	-3.2	-1.1	-1.5	1.1	1.0	-2.0	-1.7	1.9	-2.8
S371F	-143	-126	-95 1	27 9	26.1	-5.1	-6.3	86.6	-1.3	-20.5	30.6	<-22	-2.4	43.0	60.9	<-114	77.5	7.8	2.3
T376A	-1.9	-3.1	-2.5	-2.1	-1.3	-1.7	-1.3	-1.9	-1.8	1.0	-2.7	2.0	-1.7	1.1	1.1	-1.5	-2.3	1.3	-1.3
D405N	-25 6	-2.3	-2.9	-2.8	-2.1	-1.9	-1.7	-1.6	1.0	1.5	-3.1	-1.6	1.3	3.3	-1.2	-3.9	-2.2	5.6	1.5
R408S	1.4	-1.1	-1.3	-1.1	1.5	-1.6	-1.3	1.2	1.0	1.0	1.2	1.4	-1.4	-1.6	-2.1	-1.2	-3.6	1.1	-1.3

>3 <-3 <-10 <-100

Antibody Evasion Properties of SARS-CoV-2 Omicron Sublineages

													Sotro	vimab					
Company of the Company		RBD mAbs																TO	
Fold change in IC ₅₀ relative to		Class 1			Cla	ss 2		Class 3					Class 4				NTD mAbs		
D614G	CB6	Brii-196	1-20	REGN 10933	COV2- 2196	LY-CoV 555	2-15	REGN 10987	COV2- 2130	S309	2-7	Brii-198	LY-CoV 1404	ADG-2	DH1047	10-40	S2X259	4-18	5-7
BA.1	<-428	-298	<-429	<-2201	-306	<-1496	<-2716	<-1716	-83.5	-6.9	-195	2.3	1.4	-11.0	-14.2	-21.1	-13.7	<-26 7	-4.1
BA.1 + R346K	<-428	-135	<-429	-415	-187	<-1496	< 2716	< 1716	< 687	-4.5	82 1	<-22	1.5	15.7	-7.9	20 5	-7.5	< 26.7	-5.5
BA.2	<-428	-322	<-429	<-2201	-680	<-1496	<-2716	-253	-1.9	-27.0	-7.3	-10.5	1.1	<-555	<-58.0	< 114	< .96	< .26.7	<-171
T19I	-3.1	-4.9	-5.3	-3.7	-1.9	-2.2	-2.0	-2.1	-1.5	-1.8	-5.1	-1.6	-1.7	-1.7	-1.5	-2.7	-2.9	-6.1	-3.3
L24S	-2.9	-4.0	-4.6	-3.2	-2.4	-2.4	-2.8	-4.2	-2.1	-1.5	-2.6	-2.2	-1.6	-1.3	-1.1	-2.4	-2.0	-3.1	-1.1
Del25-27	-1.2	-2.6	-2.0	-1.3	-1.0	-1.4	-1.2	-1.3	1.0	-1.3	-2.8	2.0	-1.2	1.1	1.6	-1.8	1.1	23 1	16.8
V213G	-2.5	-3.1	-3.0	-3.1	-1.5	-1.1	-1.6	-2.2	-2.0	-1.2	-3.2	-1.1	-1.5	1.1	1.0	-2.0	-1.7	1.9	-2.8
S371F	-143	-126	-95 1	27 9	26.1	-5.1	-6.3	86.6	-1.3	-20.5	30.6	<-22	-2.4	43.0	60.9	<-114	77.5	7.8	2.3
T376A	-1.9	-3.1	-2.5	-2.1	-1.3	-1.7	-1.3	-1.9	-1.8	1.0	-2.7	2.0	-1.7	1.1	1.1	-1.5	-2.3	1.3	-1.3
D405N	-25 6	-2.3	-2.9	-2.8	-2.1	-1.9	-1.7	-1.6	1.0	1.5	-3.1	-1.6	1.3	3.3	-1.2	-3.9	-2.2	5.6	1.5
R408S	1.4	-1.1	-1.3	-1.1	1.5	-1.6	-1.3	1.2	1.0	1.0	1.2	1.4	-1.4	-1.6	-2.1	-1.2	-3.6	1.1	-1.3

>3 <-3 <-10 <-100

Antibody Evasion Properties of SARS-CoV-2 Omicron Sublineages

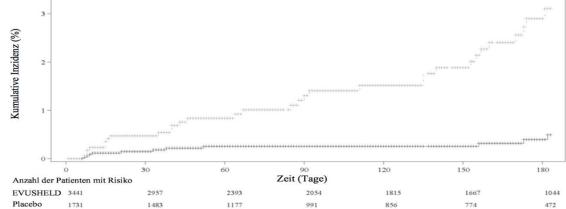
						Cliga	vimab								Denti	elovin	IdD		
								1	RBD mAb	s								NTD	m A b c
Fold change in IC ₅₀ relative to		Class 1			Cla	ss 2				Cla	ss 3				Clas	ss 4		NID	mAbs
D614G	CB6	Brii-196	1-20	REGN 10933	COV2- 2196	LY-CoV 555	2-15	REGN 10987	COV2- 2130	S309	2-7	Brii-198	LY-CoV 1404	ADG-2	DH1047	10-40	S2X259	4-18	5-7
BA.1	<-428	-298	<-429	<-2201	-306	<-1496	<-2716	<-1716	-83 5	-6.9	-195	2.3	1.4	-11.0	-14.2	-21.1	-13.7	<-26.7	-4.
BA.1 + R346K	<-428	-135	<-429	-415	-187	<-1496	< 2716	< 1716	<-687	-4.5	82 1	<-22	1.5	15.7	-7.9	20 5	-7.5	<-26.7	-5.5
BA.2	<-428	-322	<-429	<-2201	-680	<-1496	<-2716	-253	-1.9	-27.0	-7.3	-10.5	1.1	<-555	<-58.0	<.114	< .96	< .26.7	<-17
T19I	-3.1	-4.9	-5.3	-3.7	-1.9	-2.2	-2.0	-2.1	-1.5	-1.8	-5.1	-1.6	-1.7	-1.7	-1.5	-2.7	-2.9	-6.1	-3.3
L24S	-2.9	-4.0	-4.6	-3.2	-2.4	-2.4	-2.8	-4.2	-2.1	-1.5	-2.6	-2.2	-1.6	-1.3	-1.1	-2.4	-2.0	-3.1	-1.
Del25-27	-1.2	-2.6	-2.0	-1.3	-1.0	-1.4	-1.2	-1.3	1.0	-1.3	-2.8	2.0	-1.2	1.1	1.6	-1.8	1.1	23 1	16
V213G	-2.5	-3.1	-3.0	-3.1	-1.5	-1.1	-1.6	-2.2	-2.0	-1.2	-3.2	-1.1	-1.5	1.1	1.0	-2.0	-1.7	1.9	-2.
S371F	-143	-126	95 1	27 9	26.1	-5.1	-6.3	86.6	-1.3	-20.5	30.6	<-22	-2.4	-43.0	-60.9	<-114	77.5	7.8	2.3
T376A	-1.9	-3.1	-2.5	-2.1	-1.3	-1.7	-1.3	-1.9	-1.8	1.0	-2.7	2.0	-1.7	1.1	1.1	-1.5	-2.3	1.3	-1.3
D405N	-25 6	-2.3	-2.9	-2.8	-2.1	-1.9	-1.7	-1.6	1.0	1.5	-3.1	-1.6	1.3	3.3	-1.2	-3.9	-2.2	5.6	1.5
R408S	1.4	-1.1	-1.3	-1.1	1.5	-1.6	-1.3	1.2	1.0	1.0	1.2	1.4	-1.4	-1.6	-2.1	-1.2	-3.6	1.1	-1.

>3 <-3 <-10 <-100

Tixagevimab/Cilgavimab (Evusheld) zur Prä-Expositionsprophylaxe

Tabelle 4 Inzidenz von COVID-19 (Vollständiger Präexpositions-Analysesatz)

	N	Anzahl an Ereignissen ^a , n (%)	Relative Risiko- Reduktion, % (95-%-KI)
EVUSHELD 300 mg ^b	3441	8 (0,2%)	77 % (46 - 90)
Placebo	1731	17 (1,0%)	77 70 (40 - 90)



Tixagevimab/Cilgavimab (Evusheld) zur Prä-Expositionsprophylaxe

Tabelle 4 Inzidenz von COVID-19 (Vollständiger Präexpositions-Analysesatz)

	N	Anzahl an Ereignissen ^a , n (%)	Relative Risiko- Reduktion, % (95-%-KI)
EVUSHELD 300 mg ^b	3441	8 (0,2%)	77 % (46 - 90)
Placebo	1731	17 (1,0%)	77 78 (40 - 90)

www. pei.de Evusheld Fachinformation, letzter Zugriff 19.03.22

Zusammenfassung Therapiemöglichkeiten

	Molnapiruvir	Nirmatrelvir/ RItonavir	Remdesivir	Sotrovimab	Tixagevimab/ Cllgavimab
Studie	MOVe-OUT	EPIC-HR	PINETREE	COMET-ICE	PROVENT
Patienten in Studie	1408	2246	562	1057	5172
Zeitfenster	bis d5	bis d5	bis d7	bis d5	PrEP
RR Hospitalisation/Tod	48/709 vs 68/699 6,8 % vs 9,7 % RR 31 %	8/1039 vs 66/1046 0,8 % vs 6,3 % RR 88 %	2/279 vs 15/283 0,7 % vs 5,3 % RR 87 %	6/528 vs 30/529 1,1 % vs 5,7 % RR 79 %	
Symptomatische Erkrankung					8/3441 vs 17/1731 0,2 % vs 1,0 % RR 77 %
KI	SS, Stillzeit	GFR<30 ml/min Child-Pugh C Wechselwirkungen	GFR<30 ml/min ALT > 5xULN		cave: kardiale Ereignisse
Verabreichung	5d po	5d po	3d iv	1x iv	1x im
Zulassung	keine Indiv. Heilversuch	bed. Zulassung für Pat. ab 12 J mit RF	bed. Zulassung für Pat. ab 12 J mit RF	bed. Zulassung für Pat. ab 12 J mit RF	keine Indiv. Heilversuch

Klinischer Verlauf bei Omikron, Erfahrungen aus dem UKE

	Fälle	Therapie	stationär	ITS	Tod
Nieren-TX	60-70	breiter Einsatz Molnapiruvir, Nirmatrelvir/Ritonavir und Sotrovimab	10-15	2	0
Leber-Tx	ca 30	einige Molapiruvir	0	0	0
Herz-Tx	11	6 Sotrovimab	4	0	0
Lungen-Tx	4	2 Sotrovimab, 1 Molnapirurvir	1	0	0
Ki-Nieren-TX	ca 20	einige Sotrovimab	0	0	0
Ki-Leber-Tx	ca 15	0	0	0	0
Ki-Herz-TX	1	Sotrovimab	0	0	0

Martinistraße 52 | D-20246 Hamburg

Dr. Anna Nolde

Pberärztin Lungentransplantationsambulanz

Telefon +49 (0) 40 7410-27000

Telefax +49 (0) 40 7410-40700

a.nolde@uke.de | www.uke.de